实验一 光盘角速度

(一) 实验目的

- 1. 熟悉并掌握 ANSYS 软件的使用方法;
- 学习如何设定分析作业名和标题;定义单元类型和实常数;定义材料属性; 建立几何模型;划分有限元网格;
- 3. 掌握如何利用 ANSYS 分析平面应力问题.
- (二)实验设备和工具

装有装有 ANSYS 分析软件的计算机

(三) 实验步骤

问题描述

标准光盘,置于 52 倍速的光驱中处于最大读取速度(约为 10000 转/分), 计算其应力分布。标准光盘参数:

外径: 120mm

内孔径: 15mm

厚度: 1.2mm

弹性模量 1.6×10 PPa

密度: 2.2×10Kg/m

1.建立模型

1.1 设定分析作业名和标题

在进行一个新的有限元分析时,通常需要修改数据库文件名,并在图形输 出窗口中定义一个标题用来说明当前进行的工作内容。

(1) 选取菜单路径 Utility Menu | File | Change Jobname,将 Change Jobname (弹出修改文件名)对话框,如图 1.1 所示。

👷 Change Jobname	X
[/FILNAM] Enter new jobname	СН07 2
New log and error files?	No No
ок 3	Cancel Help

图 1.1 设定分析文件名

(2) 在 Enter new jobname (输入新文件名) 文本框中输入文字 "CH07", 为本分析实例的数据库文件名。

(3) 单击_____按钮,完成文件名的修改。

(4) 选取菜单路径 Utility Menu | File | Change Title,将弹出修改 标题(Change Title)对话框,如图 1.2 所示。

🕮 Change Title	×
[/TITLE] Enter new title	static analysis of a high-speed rotating CD 5
ок 6	Cancel Help

图 1.2 设定分析标题

(5)在 Enter new title(输入新标题)文本框中输入文字"static analysis of a high-speed rotating CD",为本实验的标题名。

(6)单击_______按钮,完成对标题名的指定。

(7)选取菜单路径 Utility Menu | Plot | Replot,指定的标题"static analysis of a high-speed rotating CD"将显示在图形窗口的左下角。

(8) 选取菜单路径 Main Menu | Preference, 将弹出 Preference of GUI

Filtering(菜单过滤参数选择)对话框,选中 Structural 复选框,单击_____K

1.2 定义单元类型

在进行有限元分析时,首先应根据分析问题的几何结构,分析类型和所分析的问题的精度要求等,选定适合具体分析的单元类型。实验中选用 4 节点四边形板单元 PLANE42, PLANE42 不仅可用于计算平面应力问题,还可以用于分析平面应变和轴对称问题。

(1)选取菜单路径 Main Menu | Preprocessor | Element Type | Add/Edit/Delete,将弹出 Element Types (单元类型)对话框。

(2) 单击 Add... 按钮,将弹出 Library of Element Types (单元类型 库)对话框,如图 7.3 所示。

ELibrary of Element Types			×
Library of Element Types		Structural Mass Link Beam Pipe 3 Solid Shell Hyperelastic Mooney-Rivlin	Quad 4node 42 4node 182 8node 183 8node 82 Triangle 6node 2 Axi-har 4node Quad 4node 42
Element type reference number		1	
ок 5	Apply	Cancel	Help

图 1.3 单元类型库对话框

(3) 然后在左边的列表框中选择 "Solid", 选择实体单元类型。

(4) 在右边的列表框中选择 "Quad 4node 42", 选择 4 节点四边形板单元 PLANE42。

(5)单击________ 按钮,将 PLANE42 单元添加,并关闭单元类型库对话

框,同时返回到第一步弹出的单元类型对话框,如图7.4所示。

Defined Element Types:
Type 1 PLANE42
Add Options 6 Delete
Close 9 Help

图 1.4 单元类型及选项对话框

(6) 单击 Options... 按钮, 弹出如图 1.5 所示的 PLANE42 element type options (单元选项设置) 对话框, 对 PLANE 单元进行设置, 使其可用于计算平 面应力问题。

📲 PLANE42 element type options 🛛 🔀				
Options for PLANE42, Element Type Ref. No. 1				
Element coord system defined K1		Parall to global		
Extra displacement shapes K2	I	include		
Element behavior K3	7 🛛	Plane strs w/thk		
Extra stress output K5	F	No extra output 💌		
Extra surface output K6		No extra output 💌		
OK 8 Cancel		Help		

图 1.5 单元选项设置对话框

(7) 在 Element behavior (单元行为方式)下拉列表选择 Plane stress w/thk (带有厚度的平面应力)选项。

(8)单击_______按钮,接受选项,关闭单元选项设置对话框,返回到 图 **1.4** 所示的单元类型对话框。

(9)单击 Close 按钮,关闭单元类型对话框,结束单元类型的添加。

1.3 定义实常数

实验中选用带有厚度的平面应力行为方式的 PLANE42 单元,需要设置其厚度实常数。

(1)单击 Main Menu | Preprocessor | Real Constants | Add/Edit/Delete,弹出如图 1.6 所示 Real constants (实常数)对话框。

Real Constants	×
Defined Real Constant Sets	
NONE DEFINED	
Add2 Edit Delete	
Close Help	

图 1.6 实常数添加对话框

(2) 单击 按钮, 弹出如图 1.7 所示 Element Type for Real Constants (实常数单元类型)对话框, 要求选择欲定义实常数的单元类型。

Element Type fo Choose elemen	r Real Constants 🛛 🛛 t type:
Type 1 H	PLANE42 3
ок 4	Cancel

图 1.7 选择单元类型

(3)实验中只定义了一种单元类型,在已定义的单元类型列表中选择"Type 1 PLANE42",将要为 PLANE42 单元类型定义实常数。

(4)单击_____按钮确定,关闭选择单元类型对话框,弹出 Real Constant Set (实常数集)对话框,如图 1.8 所示。

📲 Real Constant Set Number 1, for PLANE42			×
Element Type Reference No. 1			
Real Constant Set No.	1		
Real Constant for Plane Stress with Thickness (KEYOPT(3)=	3)		
Thickness THK	5 1.2		
OK 6 Apply		Cancel	Help

图 1.8 实常数定义对话框

(5) 在 Thickness (厚度) 文本框中输入 "1.2"。

Re	al Constants		×
	Defined Real Cons	stant Sets	
	Set 1		
	Add	dit Delete	1
	class 7	Hala	
		3完义的究堂数	
	ы т. / Ц2	山之间大市奴	
ose 按	钮,关闭实常	数添加对话框.	~

1.4 定义材料属性

(7) 単击___

考虑惯性力的静力分析中必须定义材料的弹性模量和密度。具体步骤如下:

(1)选取菜单路径 Main Menu | Preprocessor | Material Props | Material Models,将弹出 Define Material Model Behavior (定义材料模型) 对话框,如图 1.10 所示。

Define Material Model Behavior Material Edit Help		
Material Models Defined	Material Models Available	
Material Model Number 1	Structural Struct	• •

图 1.10 定义材料属性对话框

(2) 依次双击 Structural | Linear | Elastic | Isotropic,展开材料 属性的树形结构。将弹出 1 号材料的弹性模量 EX 和泊松比 PRXY 的定义对话框, 如图 1.11 所示。

Linear Isotropic	Properties for N Material Properties	Material Number	1 🛛
Temperatures EX PRXY	T1 1.6e4 0.3	3	
Add Temperatur	e Delete Temper	ature Cancel	Graph Help

图 1.11 线性各向同性材料的弹性模量和泊松比

(3) 在对话框的 EX 文本框中输入弹性模量为 1.6e4, 在 PRXY 文本框中输入泊松比为 0.3。

(5) 依次双击 Structural | Density, 弹出定义密度对话框, 如图 1.12 所示。

Density for Mate	rial Number 1		×
Density for Materia	al Number 1		
	T1		
Temperatures			
DENS	2.2e-9 6		
Add Temperature	Delete Temper	ature	Graph
	ok 7	Cancel	Help

图 1.12 定义材料密度

(6)在 DENS 文本框中输入密度数值 "2.2e-9",单位为吨/立方毫米。

(7)单击_______按钮,关闭对话框,并返回到定义材料属性对话框,

在定义材料属性会话框的左边一栏参考号为1的材料属性下方出现密度项。

(8)在 Define Material Model Behavior 对话框中,单击菜单项 Material

| Exit,或者单击对话框右上角的⊠按钮退出材料模型定义对话框,完成对材料模型的定义。

1.5 建立盘面模型

实验的模型比较简单,仅有一个平面。需要注意的是使用 PLANE 系列单元 时,要求模型必须位于全局 XY 平面内。默认的工作平面即位于全局 XY 平面内, 因此可以直接在默认的工作平面内创建圆环面,为了对圆环面划分有限元网格还 需要将圆环面切开分成两半。

(1)单击 Main Menu | Preprocessor | Modeling | Create | Areas | Circle | Annulus, 弹出 Annular Circular Area (圆环面)对话框,如图 1.13 所示。

🛃 Annular Circo	ular Area 🛛 🛛 🔀
• Pick	🔿 Unpick
WPX =	
¥ =	
Global X =	
¥ =	
Z =	
WP X	0
^{WP Y} 2	0
Rad-1	7.5
Rad-2	60
ок З	Apply
Reset	Cancel
Help	

图 1.13 创建圆环面对话框

(2) 在 WP X 文本框中输入圆环面圆心的 X 坐标(相对于工作平面)"0"; 在 WP Y 文本框中输入圆环面圆心的 Y 坐标"0";在 Rad-1 文本框中输入内孔半径"7.5";在 Rad-2 文本框中输入外环半径"60"。

(3)单击_____按钮确认,关闭对话框,同时 ANSYS 在当前工作平面的原点位置创建内径为 1.5,外径为 60 的圆环面。

(4) 单击菜单路径 Utility Menu | PlotCtrls | Numbering, 弹出 Plot Numbering Controls (显示图元编号控制), 如图 1.14 所示。

👷 🛙 Plot Numbering Controls	×
[/PNUM] Plot Numbering Controls	
KP Keypoint numbers	🗹 On 5
LINE Line numbers	C Off
AREA Area numbers	C off
VOLU Volume numbers	C off
NODE Node numbers	C Off
Elem / Attrib numbering	No numbering
TABN Table Names	C off
SVAL Numeric contour values	C Off
[/NUM] Numbering shown with	Colors & numbers
[/REPLOT] Replot upon OK/Apply?	Replot
OK 6 Apply Cano	el Help
图 1.14 显示图元编号控制	对话框
(5) 单击 Keypoint numbers (关键点编号) 复	夏选框使其选中。

(6)单击 OK 按钮,使设置生效,并对图形窗口进行重绘,如图 1.15 所示。

图 1.15 创建的圆环面

(7)单击菜单路径 Main Menu | Modeling | Create | Lines | Lines | Straight Line, 弹出关键点选择对话框,要求选择要创建的直线的两个端点。 (8)用鼠标在图形窗口中点取关键点 1 和 3 (或者在选择对话框的输入框 中输入"1,3"然后回车),创建出端点为关键点 1,3 的直线。

(9)单击______按钮,关闭选择对话框。

(10) 单击 Utility Menu | Plot | Multi-Plots,在图形窗口显示所有 图元,如图 1.16 所示。

(**12**)选择创建的圆环面,并单击选择对话框的______按钮,又弹出线 选择对话框,要求选择分割面的线。

(13)选择在第 8 步中创建的线,并单击选择对话框的______按钮, ANSYS 将进行布尔运算,将选定的面分割开来成为两个面。如图 1.17 所示。

实验将选用 PLANE42 单元对盘面划分映射网格。

(1) 单击 Main Menu | Preprocessor | Meshing | MeshTool, 弹出 Mesh Tool (网格工具), 如图 1.18 所示。

MeshTool		
Element Attri	ibutes:	
Global	•	Set
🔲 Smart Siz	ze	
•		Þ
Fine	6	Coarse
Size Controls	:	
Global	Set	Clear
Areas	Set	Clear
Lines	Set2	Clear
	Сору	Flip
Layer		
Keypts	Set	Clear
Mesh:	Areas	
Shape: C Tri © Quad 🖌		
O Free Mapped C' Sweep		
Pick corners		
Mash	5	Clear
Mesh 🍎Llear		
Refine at: Elements		
Refine		
Close		Help
10	1	

图 1.18 网格工具

(2) 单击 Lines 域 Set 按钮,弹出线选择对话框,要求选择欲定义单元

分划数的线。单击[Pick All] 按钮,选择所有的线,弹出 Element Sizes on Picked Lines(选定线上单元分划数)设定对话框,如图 1.19 所示。

Element Sizes on Picked Lines	×
[LESIZE] Element sizes on picked lines	
SIZE Element edge length	
NDIV No. of element divisions	10 3
(NDIV is used only if SIZE is blank or zero)	
KYNDIV SIZE,NDIV can be changed	Ves
SPACE Spacing ratio	
ANGSIZ Division arc (degrees)	
(use ANGSIZ only if number of divisions (NDIV) and	
element edge length (SIZE) are blank or zero)	
Clear attached areas and volumes	No No
ок 4 Арріу	Cancel Help

图 7.19 设定单元分划数对话框

(3) 在对话框中的 No. of element divisions (单元分划数) 文本框中

输入"**10**",然后单击______按钮,结束设定,关闭对话框。

(4) 在网格工具中选择分网对象为 Area,网格形状为 Quad (四边形),选择分网形式为 Mapped (映射)。附加选项中选择 "Pick corners"。

(5)单击 Mesh 按钮,弹出面选择对话框,要求选择欲划分网格的面。

选择一个面后单击 按钮,弹出点选择对话框,要求选择所选面的四个顶点。

(6) 依次点取图 1.17 中的四个关键点 3, 7, 6, 1 (也可在点选择对话框的输入文本框中输入"3,7,6,1", 然后回车), 当选择完四个顶点后单击 Apply 按钮 ANSYS 将对选择的面进行网格划分并返回到面选择对话框, 要求继续选择欲划分网格的面。

(7)选择另外一个面,选定后单击 面选择对话框的按钮,弹出 点选择对话框。

(8) 依次点取图 7.17 中的四个关键点 3, 7, 6, 1 (也可在点选择对话框的输入文本框中输入"3,7,6,1", 然后回车), 当选择完四个顶点后单击 0K 按钮 ANSYS 将对选择的面进行网格划分。

(9) 单击菜单路径 Utility Menu | Plot | Elements, 图形窗口中将只

显示刚刚生成的单元。如图 1.20 所示。

图 1.20 对面划分的网格

(10)单击 SAVE_DB 按钮,保存数据库。

2. 定义边条并求解

建立有限元模型后,就需要定义分析类型和施加边界条件及载荷然后进行 求解。本实例中载荷为 **10000** 转的转速形成的离心力,位移边界为将内孔边缘节 点的周向位移固定。

2.1 施加位移边界

实验的位移边界条件为将内孔边缘节点的周向位移固定,为施加周向位移, 需要将节点坐标系旋转到柱坐标系下。具体步骤如下:

(1) 单击 Utility Menu | WorkPlane | Change Active CS to | Global Cylindrical,将激活坐标系切换到总体柱坐标系下。

(2) 单击 Main Menu | Preprocessor | Modeling | Move/Modify | Rotate Node CS | To Active CS, 弹出节点选择对话框,要求选择欲旋转坐标系的节点。

(**3**)单击[Pick All] 按钮,选择所有节点,所有节点的节点坐标系都将被 旋转到当前激活坐标系下即总体柱坐标系。

(4) 单击菜单路径 Utility Menu | Select | Entities, 弹出 Select Entities (实体选择)对话框。如图 1.21 所示。

Select Entities 🛛 🕅		
Nodes 🚽 5		
By Location 💌 6		
• × coordinates 7		
○ Y coordinates		
O Z coordinates		
Min,Max		
7.5 8		
• From Full		
C Reselect		
C Also Select		
O Unselect		
Sele All Invert		
Sele None Sele Belo		
OK 9 Apply		
Plot Replot		

图 1.21 实体选择对话框

(5) 然后在第一个下拉列表中选择 Nodes (节点),如图 1.21 所示。

(6) 在下面的下拉列表中选择 By Location (通过位置) 选取。

(7) 在位置选项中列出了位置属性的三个可用项(即标识位置的三个坐标 分量),单击 X coordinates (X 坐标)单选按钮使其选中,表示要通过 X 坐标来 进行选取,注意此时激活坐标系为柱坐标系,X 代表的是径向。

(8) 在文本框中输入用最大值和最小值构成的范围,输入"7.5",表示选择径向坐标为7.5的节点,即内孔边上的节点。

(9)单击 按钮,将符合要求的节点添入选择集中。

(10) 单击菜单路径 Main Menu | Solution | Define Loads | Apply | Structural | Displacement | On Nodes, 弹出节点选择对话框,要求选择欲施加位移约束的节点。

(11) 单击^{Pick All} 按钮,选择当前选择集中的所有节点(当前选择集中的节点为第 4-9 步中选择的内孔边上的节点),弹出 Apply U, Rot on Nodes(在节点上施加位移约束)对话框,如图 1.22 所示。

👷 Apply U,ROT on Nodes	×
[D] Apply Displacements (U,ROT) on Nodes	
Lab2 DOFs to be constrained	12
Apply as	Constant value
If Constant value then:	
VALUE Displacement value	
ок13 Арріу	Cancel Help

图 1.22 施加位移约束对话框

(12)选择UY(Y方向位移),此时节点坐标系为柱坐标系,Y方向为周向,即施加周向位移约束。

(13)单击 按钮, ANSYS 在选定节点上施加指定的位移约束。如 图 1.23 所示。

(14) 单击 Utility Menu | Select | Everything, 选取所有图元、单元

和节点。

2.2 施加转速惯性载荷并求解

实验中,要施加盘片高速旋转引起的惯性载荷。

(1) 单击 Main Menu | Solution | Define Loads | Apply | Other | Angular Velocity, 弹出 Apply Angular Velocity(施加角速度)施加对话框, 如图 1.24 所示。

🛱 Apply Angular Velocity		×
[OMEGA] Apply Angular Velocity		
OMEGX Global Cartesian X-comp		0
OMEGY Global Cartesian Y-comp		0
OMEGZ Global Cartesian Z-comp		^{1047.2} 2
KSPIN Spin softening key		
		• No modification
		C Decrease stiffn
ок 3	Cancel	Help

图 1.24 施加角速度对话框

(2) 在 Global Cartesian Z-comp(总体 Z 轴角速度分量) 文本框中输入 "1047.2",需要注意的是转速是相对于总体笛卡儿坐标系施加的,单位是弧度/ 秒。

0K 按钮,施加转速引起的惯性载荷。 (3) 单击

(4) 单击 SAVE_DB 按钮,保存数据库。

(5) 单击 Main Menu | Solution | Solve | Current LS, 弹出一个确认 对话框和状态列表,如图1.25所示。要求查看列出的求解选项。

📲 Solve Current Load Step		×
[SOLVE] Begin Solution of Current Load Step		
Review the summary information in the lister wind	ow (entitled	
"/STAT Command"), then press OK to start the so	lution.	
<u> </u>	Cancel	Help
[2] 1 95 	9.当前载告生确计对	光柱

图 1.25 求解当前载荷步确认对话框

(6) 查看列表中的信息确认无误后,单击____K按钮,开始求解。

(7) 求解完成后会弹出如图 1.26 所示的求解结束对话框。

Note	
i	Solution is done!
	Close 8
	图 1.26 求解完成消息框

(8) 单击 Close 按钮,关闭求解结束对话框。

3. 查看结果

求解完成后,就可以利用 ANSYS 程序生成的结果文件(对于静力分析来说就是 Jobname.RST)进行后处理,静力分析中通常通过 POST1 后处理器已经可以处理和显示大多感兴趣的结果数据。

3.1 旋转结果坐标系

实验模型为旋转件,在柱坐标系下查看结果将会比较方便。因此在查看变 形和应力分布之前,首先将结果坐标系旋转到柱坐标系下。

(1)单击 Main Menu | General Postproc | Options for Outp,弹出 Options for Output (结果输出选项)对话框。如图 1.27 所示。

Options for Output [RSY5] Results coord system Local system reference no. 2 [Global Cartesian] [Global Cartesian] [Global Spherical] Ax calculated Local system [/EFACET] Facets/element edge [SHELL] Shell results are from [LAYER] Layer results are from [LAYER] Layer results are from [FORCE] Force results are [FORCE] Force results are OK 3 Cancel	📲 Options for Output			×
[RSYS] Results coord system Global cylindric Local system reference no. 2 [AVRES] Avg rsits (pwr grph) for Global spherical [AVRES] Avg rsits (pwr grph) for Local system [/EFACET] Facets/element edge 1 facet/edge [SHELL] Shell results are from - DEFAULT - I [LAYER] Layer results are from - Max failure crit Specified layer number 0 [FORCE] Force results are Total force OK 3 Cancel Help	Options for Output			
Local system reference no. 2 Global Cartesian Global cwindric Global spherical As calculated Local system [AVRES] Avg rslts (pwr grph) for [/EFACET] Facets/element edge 1 facet/edge I [/EFACET] Facets/element edge 1 facet/edge I [SHELL] Shell results are from - DEFAULT - I [LAYER] Layer results are from • Max failure crit • Specified layer Specified layer number 0 I I [FORCE] Force results are Total force I OK 3 Cancel Help	[RSYS] Results coord system		Global cylindric	•
[AVRES] Avg rslts (pwr grph) for As calculated Local system [/EFACET] Facets/element edge 1 facet/edge [SHELL] Shell results are from -DEFAULT - [LAYER] Layer results are from Max failure crit Specified layer number [FORCE] Force results are Total force [FORCE] Force results are Total force	Local system reference no.	2	Global Cartesian Global cylindric Global spherical	
[/EFACET] Facets/element edge 1 facet/edge [SHELL] Shell results are from -DEFAULT - [LAYER] Layer results are from	[AVRES] Avg rslts (pwr grph) for		As calculated	1
[SHELL] Shell results are from [LAYER] Layer results are from C Max failure crit © Specified layer Specified layer number [FORCE] Force results are Total force	[/EFACET] Facets/element edge		1 facet/edge	•
[LAYER] Layer results are from Max failure crit Specified layer D FORCE] Force results are OK 3 Cancel Help	[SHELL] Shell results are from		- DEFAULT -	•
C Max failure crit © Specified layer [FORCE] Force results are OK 3 Cancel Help	[LAYER] Layer results are from			
© Specified layer point processits are Total force ▼ OK 3 Cancel Help			🔿 Max failure crit	
Specified layer number 0 [FORCE] Force results are Total force •			Specified layer	
[FORCE] Force results are Total force	Specified layer number		0	
OK 3 Cancel Help	[FORCE] Force results are		Total force	•
OK 3 Cancel Help				
OK 3 Cancel Help				
OK 3 Cancel Help				
ок 3 Cancel Help				
OK 3 Cancel Help				
OK 3 Cancel Help				
	or 3	Capital	Hala	1
				l

图 1.27 结果输出选项对话框

(2) 在 Results coord system (结果坐标系)下拉列表中选择 Global cylindric (总体柱坐标系)。

- (3)单击 OK 按钮,接受设定,关闭对话框。
- 3.2 查看变形

实验关键的变形为径向变形,在高速旋转时,径向变形过大,可能导致边 缘部位与其他部件发生摩擦。

(1)单击菜单路径 Main Menu | General Postproc | Plot Results | Contour Plot | Nodal Solu, 弾出 Contour Nodal Solution Data (等值线显 示节点解数据)对话框,如图 1.28 所示。

💥 🛱 Contour Nodal Solution Data	×
[PLNSOL] Contour Nodal Solution Data	
Item,Comp Item to be contoured	DOF solution Translation UX Stress UY 3 Energy USUM USUM Strain-elastic ROTY Translation Strain-plastic Translation UX
KUND Items to be plotted	
	C Def shape only
	C Def + undeformed
	Def + undef edge
Fact Optional scale factor	1
[/EFACET] Interpolation Nodes	
	 Corner only
	C Corner + midside
	C All applicable
[AVPRIN] Eff NU for EQV strain	
ок 5	Apply Cancel Help

图 1.28 等值线显示节点解数据对话框

(2) 在 Item to be contoured (等值线显示结果项)域的左边的列表框 中选择 DOF solution (自由度解)。

(3) 在右边的列表框中选择 Translation UX (X 向位移),此时结果坐标 系为柱坐标系,X 向位移即为径向位移。

(4) 单击 Def + undef edge (变形后和未变形轮廓线) 单选按钮, 使其选中。

图 1.29 径向变形图

3.3 查看应力

盘片在高速旋转时的主要应力也是径向应力。

(1) 单击 Main Menu | General Postproc | Plot Results | Contour Plot
 | Nodal Solu, 弾出 Contour Nodal Solution Data (等值线显示节点解数据)
 对话框,如图 1.30 所示。

Contour Nodel Solution Data	
[PENDE] Characteristical Solitana Gene	
ten, kong tertole oforen 2	DCF sol.8tn * Statistich SS * Interes Statistich SS * Statistich SS * * Interes Statistich SS * Statistich SS * * Statistic SS * * Statistic SS * * Statistic SS * *
KLND - Demo to be plotted	
	@ Wedgewy 4
	C tef+ indefersed
	🗢 inferminingn
Fact Optione spale factor	-
[ICTINCET] Interior at on Nodes	
	⊙ Conservery
	Ciana kodara
	િ ભીગુ છે. નોટ-
[^-PRIN] I ^C NU for E 상 35 m	2

图 1.30 等值线显示节点解数据对话框

(2) 在 Item to be contoured (等值线显示结果项) 域的左边的列表框 中选择 Stress (应力)。

(3) 在右边的列表框中选择 X-direction SX (X 方向) 应力。

(4) 单击 Def shape only(仅显示变形后模型)单选按钮,使其选中。

(6) 单击 Main Menu | General Postproc | Plot Results | Contour Plot | Nodal Solu, 弾出 Contour Nodal Solution Data 对话框。

(7) 在 Item to be contoured 域的左边的列表框中选择 Stress。

- (8) 在右边的列表框中选择 von Mises SEQV。
- (9) 单击 Def shape only 单选按钮, 使其选中。

(10)单击 OK 按钮,图形窗口中显示出 von Mises 等效应力分布图, 如图 1.32 所示。

图 1.32 von Mises 等效应力图

4. 命令流输入

下面是实验的输入命令流,可以通过此命令流完成与 GUI 方式等效的分析。 "!"

号后的文字为注释。

1. 设定分析文件名和分析标题

/FILNAME, CH07

/TITLE, static analysis of a high-speed rotating CD !进入前处理器 /PREP7

ET,1,PLANE42!指定平面四节点四边形单元PLANE42
KEYOPT,1,3,3!指定单元行为方式为平面应力
R,1,1.2!定义厚度实常数为1.2mm
MP,EX,1,1.6e4!定义材料属性之杨氏模量为1.6e4MPa
MP,PRXY,1,0.3!定义材料属性之泊松比为0.3
MP,DENS,1,2.2e-9!定义材料密度为2.2e-9吨/立方毫米
CYL4,0,0,7.5,60!创建内孔半径为7.5mm,外径为60nm的圆环面
LSTR,1,3!创建切割环面用的线
ASBL,1,9!将环面切开分为两个面
SAVE!保存模型数据库
!对截面划分网格
LESIZE,ALL,,10!指定所有线的单元分割数为10
TYPE,1!指定对面划分网格采用得单元类型为PLANE42,ANSYS也可以自动

MSHAPE, 0, 2D

MSHKEY,1 !指定对面采用四边形单元并采用映射网格进行划分 AMAP,2,3,7,6,1

AMAP,3,3,7,6,1 !通过选择面顶点的方式对两个面进行网格划分 CSYS,1 !设定激活坐标系为总体柱坐标系

NROTAT,ALL !将节点坐标系旋转到激活坐标系,即总体柱坐标系 FINISH !加载并求解

/SOLU

ANTYPE, STATIC ! 定义分析类型为静力分析(ANSYS 缺省) NSEL, S, LOC, X, 7.5 D, ALL, UY ! 将内孔边界节点周向施加位移约束 ALLSEL, ALL ! 重新选择所有图元、单元和节点 ONEGA, 0, 0, 1047.2 ! 对模型施加转速引起的离心惯性力 SAVE ! 保存模型数据库 SOLVE ! 求解 FINISH ! 查看结果

/P0ST1

RSYS,1 !将结果坐标系旋转到总体柱坐标系下 PLNSOL,U,X,2,1 !显示径向变形图 PLNSOL,S,X,0,1 !显示径向应力分布图 PLNSOL,S,EQV,0,1 !显示等效应力分布图 FINISH

(四)实验结果及处理

记录实验过程、完成建模并对实验所得数据进行分析,完成实验报告。